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What is memory analysis?

• Input:

– A memory snapshot (or dump) of a running physical 

machine or virtual machine

• Analysis:

– Scan data structure signatures

– Traverse data structures

• Output:

– Semantic knowledge extracted from the snapshot

– Examples: running processes, loaded modules, network 

connections, …
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Existing Work

• Signature Scanning

– Signature tools in Volatility

– Robust signature [Dolan-Gavitt et al. CCS 2009]

– Graph signature [Lin et al. NDSS 2011]

• Data Structure Traversal

– Traversal tools in Volatility

– KOP/MAS from Microsoft Research
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Why is it useful?

• Digital Forensics

– Collect crime evidence

• Virtual Machine Introspection

– Monitor VM activities from outside, desired for 

IaaS cloud providers 

• Malware Detection

– Find malware (especially kernel rootkit) footprint 

in memory
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Unique Advantage: Code and data must be loaded into memory 

to be executed and accessed



What are the challenges?

• Semantic Gap

– Data structure definitions (Limited documentation for 

closed-source OSes)

– Global variables (The roots for traversal)

– Generic pointers (void *, struct list_head, LIST_ENTRY)

– Consequence: low coverage and reduced accuracy

• Memory Manipulation Attacks

– Pointer manipulation (add/remove/change a pointer, unlink 

an object)

– Value manipulation (obtain fraudulent info)

– Consequence: low robustness and low trustworthiness  
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Questions to Investigate

• Q1: Correctness (in non-deceptive settings)

– How can we know if a memory analysis tool produces 

correct results, especially for closed-source OSes? 

• Q2: Robustness (in deceptive settings)

– To what extent a memory analysis tool can still produce 

correct results, if the memory snapshot has been 

compromised?

• Q3: Improving the state-of-the-art

– Can we develop a better memory analysis tool (Higher 

coverage, more robust)?
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We focus on OS kernel space. User-level memory analysis is beyond the scope for now.



Q1: Correctness Study
• How to obtain the ground truth: Kernel Data Structure Graph

• We construct it on the fly 

– Whole-system dynamic binary analysis

– Use DECAF, an open-source platform

– Hook malloc/free functions
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https://code.google.com/p/decaf-platform/
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An example graph

• How do we map these objects into their types?
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Mapping Caller List to Type
• Rationale: Objects allocated at the same calling 

context have the same type
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Caller List to Type Mapping in Windows 7

We obtain debug symbols to map these callers to kernel function names 



Correctness for Basic Volatility Tools

• False positives are quite common in several tools, because 

signature patterns are not strong enough.

• 6 false negatives in filescan are due to an implementation 

error. We reported a patch to Volatility.
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Correctness and Efficiency for Robust Signatures

• We did not observe any errors

• Efficiency is quite low: spend several minutes to scan one 

memory dump, over 10 minutes for big dumps (1GB)

– Cannot use these schemes for realtime VM scanning

• Basic signature tools are much faster

– Only a few seconds 

– Skip large memory regions based on unreliable heuristics
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Q1: Summary
• We obtained the ground truth by

– dynamically monitoring kernel memory allocation and de-allocation 

– performing type inference to map these objects to their types

• Signature tools often raise false positives

– Devise a good signature is hard

– How to determine if an object is dead?

• Even one tool has an implementation error

– Due to incorrect understanding of kernel data structure definition

• Robust signature schemes are slow!

– Has to examine every byte at least once
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Q2: Robustness Study

• Deceptive scenario

– The OS kernel has been compromised

– The attacker can write to arbitrary memory locations to 

deceive security analysis

– The attacker does not want to crash the system

• Questions

– Which data structure fields can be modified (mutable)?

– How can these mutations affect memory analysis tools?
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Q2: Our Approach

• Automatic Mutation Testing

1. Start a test program inside VM

2. Save and pause the VM

3. Locate a kernel data structure belonging to that test 

program

4. Select a field to mutate

5. Resume the VM to finish the test program 

(system may crash or the program may terminate prematurely)

6. Go to Step 2
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Q2: Test Cases and Mutation Rules
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Q2: Our Findings

16Windows XP SP3

Linux 2.6
Many fields are mutable, and thus untrustworthy. Bad news!



Q2: Insights
• Network related values are not mutable

– Local and remote IP addresses and ports

• Process ID is mutable

– In Windows, PID in EThread is not mutable

• Strings are mutable

– Process name, file name, module name, pool tag, etc.

• Timestamps are mutable

– E.g. process creation and termination time
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Q3: Improving the state-of-the-art

• Q3.1: Can we leverage information redundancy to 

defeat value manipulation attacks?

– E.g., PID appears in multiple data structures. Attackers 

need to modify all these copies for complete deception

• Q3.2: Can we improve the coverage and accuracy of 

data structure identification from a global view?

– Prior approaches evaluate each data structure individually
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Q3.1:  How to find duplicate values in kernel 

space?

• Trace kernel execution

• For each insn, perform 

bidirectional data flow 

analysis to track duplicate 

values
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Q3.1: Testing Procedure
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Q3.1: Mutating duplicate values in Windows XP
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Q3.1: Mutating duplicate values in Linux
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Q3.1: Observations

• Duplicate values do exist for many important 

semantic values

• Unfortunately, most of these duplicate values are 

mutable both collectively and individually

• In very limited cases, checking duplicate values can 

be helpful to defeat value manipulation attacks
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Q3.2: A Network Perspective
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• Kernel data structure 

graph is a small-world 

network

A kernel data structure graph for

Windows XP

5 dumps for Windows XP



Q3.2: A Network Perspective (cont’d)

• Points-to relation reveals the objects’ types

– Deterministically (for typed pointers)

– Probabilistically (for generic pointers)

• We perform supervised learning

– Use DECAF to collect labeled memory dumps

– Construct a pointer-constraint model

• We perform network-based inference

– Adapt random surfer model (a page rank 

algorithm) 
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Q3.2: Scan, Traverse and Infer 



More details…
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Will be presented in Thursday 11am



Q3.2: Result Highlights

• Achieve > 95% coverage for WinXP/Win7

– Include both documented and undocumented objects

• With 80% typed pointers removed, our coverage 

degradation is negligible

– Thanks to the small-world network

• Outperform Volatility

– Detect rootkit footprint in undocumented objects

– Resilient against pool tag manipulations

– In contrast, volatility heavily relies on pool tags and thus is 

completely defeated
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Summary

• We conducted a systematic study on memory analysis

– With respect to correctness and robustness

– Explore ways to improve it

• We made the following conclusions

– The existing tools may produce erroneous results, and may even have 

implementation errors.

– The robustness of these tools are questionable, given that attackers can 

freely manipulate many semantic values

– Exploiting duplicate values can improve the robustness, but the 

improvement is marginal

– Exploiting pointer relations is a promising direction. It can improve 

coverage and defeat pointer manipulation attacks.
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For more details, please read

• “On the Trustworthiness of Memory Analysis --- An 

Empirical Study from the Perspective of Binary 

Execution”, IEEE Transactions on Dependable and 

Secure Computing

• “MACE: High-Coverage and Robust Memory 

Analysis for Commodity Operating Systems”, 

ACSAC 2014.
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Questions?
Questions?


