
L.C.Smith
College of Engineering 
and Computer Science

On Correctness, Robustness and Coverage of 

Memory Analysis

Heng Yin

Assistant Professor

Department of Electrical Engineering and Computer Science, 
Syracuse University



What is memory analysis?

• Input:

– A memory snapshot (or dump) of a running physical 

machine or virtual machine

• Analysis:

– Scan data structure signatures

– Traverse data structures

• Output:

– Semantic knowledge extracted from the snapshot

– Examples: running processes, loaded modules, network 

connections, …

2



Existing Work

• Signature Scanning

– Signature tools in Volatility

– Robust signature [Dolan-Gavitt et al. CCS 2009]

– Graph signature [Lin et al. NDSS 2011]

• Data Structure Traversal

– Traversal tools in Volatility

– KOP/MAS from Microsoft Research

3



Why is it useful?

• Digital Forensics

– Collect crime evidence

• Virtual Machine Introspection

– Monitor VM activities from outside, desired for 

IaaS cloud providers 

• Malware Detection

– Find malware (especially kernel rootkit) footprint 

in memory

4

Unique Advantage: Code and data must be loaded into memory 

to be executed and accessed



What are the challenges?

• Semantic Gap

– Data structure definitions (Limited documentation for 

closed-source OSes)

– Global variables (The roots for traversal)

– Generic pointers (void *, struct list_head, LIST_ENTRY)

– Consequence: low coverage and reduced accuracy

• Memory Manipulation Attacks

– Pointer manipulation (add/remove/change a pointer, unlink 

an object)

– Value manipulation (obtain fraudulent info)

– Consequence: low robustness and low trustworthiness  

5



Questions to Investigate

• Q1: Correctness (in non-deceptive settings)

– How can we know if a memory analysis tool produces 

correct results, especially for closed-source OSes? 

• Q2: Robustness (in deceptive settings)

– To what extent a memory analysis tool can still produce 

correct results, if the memory snapshot has been 

compromised?

• Q3: Improving the state-of-the-art

– Can we develop a better memory analysis tool (Higher 

coverage, more robust)?

6

We focus on OS kernel space. User-level memory analysis is beyond the scope for now.



Q1: Correctness Study
• How to obtain the ground truth: Kernel Data Structure Graph

• We construct it on the fly 

– Whole-system dynamic binary analysis

– Use DECAF, an open-source platform

– Hook malloc/free functions

7
https://code.google.com/p/decaf-platform/

DECAF

A
n

al
ys

is
 P

lu
gi

n

Memory 
Dump

Mem 
Analysis 

Tool
Result

Compare



An example graph

• How do we map these objects into their types?

8

…
…8050abcd:

e0001000: e0002000: e0003000:

ntoskrnl.exe

Caller1=804e4020

Caller2=805210a0

Caller3=804d30ab

Size=128

Caller1=804e4020

Caller2=805210a0

Caller3=804d30ab

Size=128

Caller1=804e4020

Caller2=805210a0

Caller3=804d30ab

Size=128



Mapping Caller List to Type
• Rationale: Objects allocated at the same calling 

context have the same type

9

Caller List to Type Mapping in Windows 7

We obtain debug symbols to map these callers to kernel function names 



Correctness for Basic Volatility Tools

• False positives are quite common in several tools, because 

signature patterns are not strong enough.

• 6 false negatives in filescan are due to an implementation 

error. We reported a patch to Volatility.
10



Correctness and Efficiency for Robust Signatures

• We did not observe any errors

• Efficiency is quite low: spend several minutes to scan one 

memory dump, over 10 minutes for big dumps (1GB)

– Cannot use these schemes for realtime VM scanning

• Basic signature tools are much faster

– Only a few seconds 

– Skip large memory regions based on unreliable heuristics

11



Q1: Summary
• We obtained the ground truth by

– dynamically monitoring kernel memory allocation and de-allocation 

– performing type inference to map these objects to their types

• Signature tools often raise false positives

– Devise a good signature is hard

– How to determine if an object is dead?

• Even one tool has an implementation error

– Due to incorrect understanding of kernel data structure definition

• Robust signature schemes are slow!

– Has to examine every byte at least once

12



Q2: Robustness Study

• Deceptive scenario

– The OS kernel has been compromised

– The attacker can write to arbitrary memory locations to 

deceive security analysis

– The attacker does not want to crash the system

• Questions

– Which data structure fields can be modified (mutable)?

– How can these mutations affect memory analysis tools?

13



Q2: Our Approach

• Automatic Mutation Testing

1. Start a test program inside VM

2. Save and pause the VM

3. Locate a kernel data structure belonging to that test 

program

4. Select a field to mutate

5. Resume the VM to finish the test program 

(system may crash or the program may terminate prematurely)

6. Go to Step 2

14



Q2: Test Cases and Mutation Rules

15



Q2: Our Findings

16Windows XP SP3

Linux 2.6
Many fields are mutable, and thus untrustworthy. Bad news!



Q2: Insights
• Network related values are not mutable

– Local and remote IP addresses and ports

• Process ID is mutable

– In Windows, PID in EThread is not mutable

• Strings are mutable

– Process name, file name, module name, pool tag, etc.

• Timestamps are mutable

– E.g. process creation and termination time

17



Q3: Improving the state-of-the-art

• Q3.1: Can we leverage information redundancy to 

defeat value manipulation attacks?

– E.g., PID appears in multiple data structures. Attackers 

need to modify all these copies for complete deception

• Q3.2: Can we improve the coverage and accuracy of 

data structure identification from a global view?

– Prior approaches evaluate each data structure individually

18



Q3.1:  How to find duplicate values in kernel 

space?

• Trace kernel execution

• For each insn, perform 

bidirectional data flow 

analysis to track duplicate 

values

19



Q3.1: Testing Procedure

21



Q3.1: Mutating duplicate values in Windows XP

22



Q3.1: Mutating duplicate values in Linux

23



Q3.1: Observations

• Duplicate values do exist for many important 

semantic values

• Unfortunately, most of these duplicate values are 

mutable both collectively and individually

• In very limited cases, checking duplicate values can 

be helpful to defeat value manipulation attacks

24



Q3.2: A Network Perspective

25

• Kernel data structure 

graph is a small-world 

network

A kernel data structure graph for

Windows XP

5 dumps for Windows XP



Q3.2: A Network Perspective (cont’d)

• Points-to relation reveals the objects’ types

– Deterministically (for typed pointers)

– Probabilistically (for generic pointers)

• We perform supervised learning

– Use DECAF to collect labeled memory dumps

– Construct a pointer-constraint model

• We perform network-based inference

– Adapt random surfer model (a page rank 

algorithm) 

26



Q3.2: Scan, Traverse and Infer 



More details…

28

Will be presented in Thursday 11am



Q3.2: Result Highlights

• Achieve > 95% coverage for WinXP/Win7

– Include both documented and undocumented objects

• With 80% typed pointers removed, our coverage 

degradation is negligible

– Thanks to the small-world network

• Outperform Volatility

– Detect rootkit footprint in undocumented objects

– Resilient against pool tag manipulations

– In contrast, volatility heavily relies on pool tags and thus is 

completely defeated

29



Summary

• We conducted a systematic study on memory analysis

– With respect to correctness and robustness

– Explore ways to improve it

• We made the following conclusions

– The existing tools may produce erroneous results, and may even have 

implementation errors.

– The robustness of these tools are questionable, given that attackers can 

freely manipulate many semantic values

– Exploiting duplicate values can improve the robustness, but the 

improvement is marginal

– Exploiting pointer relations is a promising direction. It can improve 

coverage and defeat pointer manipulation attacks.

30



For more details, please read

• “On the Trustworthiness of Memory Analysis --- An 

Empirical Study from the Perspective of Binary 

Execution”, IEEE Transactions on Dependable and 

Secure Computing

• “MACE: High-Coverage and Robust Memory 

Analysis for Commodity Operating Systems”, 

ACSAC 2014.

31



Questions?
Questions?


